国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于脈沖耦合神經(jīng)網(wǎng)絡(luò )的彈簧卡箍缺陷檢測
DOI:
CSTR:
作者:
作者單位:

南京航空航天大學(xué) 機械結構力學(xué)及控制國家重點(diǎn)實(shí)驗室,南京航空航天大學(xué) 機械結構力學(xué)及控制國家重點(diǎn)實(shí)驗室,南京航空航天大學(xué) 機械結構力學(xué)及控制國家重點(diǎn)實(shí)驗室

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

國家自然科學(xué)基金資助項目(10972102)S;博士點(diǎn)基金(200802870007)S;江蘇省科技支撐(BE2009163)S; 淮安市科技項目(HAG2012048)S;江蘇省高校優(yōu)勢學(xué)科建設工程資助項目(PAPD)


A spring clamp detection system based on PCNN
Author:
Affiliation:

State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics Astronautics,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics Astronautics,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics Astronautics

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統的彈簧卡箍缺陷多為產(chǎn)后人工全檢,存在漏檢與缺陷率上升等現象,這不但會(huì )使成本上升、也對人力資源提出了考驗。為此實(shí)現自動(dòng)實(shí)時(shí)在線(xiàn)全檢就成為急需解決的課題,設計了基于機器視覺(jué)的彈簧卡箍在線(xiàn)自動(dòng)檢測系統,該系統安裝在彈簧卡箍流水線(xiàn)兩側,搭建特定光源,通過(guò)激光傳感器外部觸發(fā)工業(yè)相機對其表面進(jìn)行圖像捕獲,送上位機進(jìn)行缺陷判定與定位,最后通過(guò)RS485將判定結果送下位機來(lái)控制剔除機制。實(shí)驗結果顯示:該系統采用改進(jìn)的脈沖神經(jīng)網(wǎng)絡(luò )(PCNN)能準確提取目標缺陷區域并對缺陷進(jìn)行判定,可在0.348 s每個(gè)零件的速度下,檢測出彈簧卡箍表面大于10像素的缺陷。通過(guò)對不同彈簧卡箍進(jìn)行檢測驗證實(shí)驗,證明了PCNN算法對缺陷分割的準確性和有效性。

    Abstract:

    The traditional defect detection method of spring clamps is manual detecting after production, which causes higher misjudgment rate and deficiency rate, leads to higher costs and brings tougher challenges to the human resources. This causes an increasing demand for automatic online detection system and computer vision plays a leading role in this growing field. In this paper, the automatic real-time detection system of the clamps based on machine vision is designed. This system is situated on both sides of the production line. It hardware is composed of a specific light source, a laser sensor, an industrial camera, a computer and a rejecting mechanism. The camera begins to capture an image of the clamp once triggered by the laser sensor. The image is then sent to the computer for defective judgment and location through Gigabit Ethernet (GigE), after which the result will be sent to rejecting mechanism through RS485 and the unqualified ones will be removed. Experiments on real-world images demonstrate the pulse coupled neural network can extract the defect region and judge defect. It can recognize any defect greater than 10 pixels under the speed of 2.8 clamps per second. Segmentations of various clamp images are implemented with the proposed approach and the experimental results demonstrate its reliability and validity.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱霞,陳仁文,章飄艷.基于脈沖耦合神經(jīng)網(wǎng)絡(luò )的彈簧卡箍缺陷檢測計算機測量與控制[J].,2014,22(12).

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2014-05-07
  • 最后修改日期:2014-05-27
  • 錄用日期:2014-05-27
  • 在線(xiàn)發(fā)布日期: 2014-12-10
  • 出版日期:
文章二維碼
苏尼特右旗| 汤阴县| 莎车县| 阿拉善右旗| 钟祥市| 泉州市| 福贡县| 长岭县| 和静县| 吕梁市| 渑池县| 逊克县| 玉环县| 平泉县| 和静县| 烟台市| 舞钢市| 安龙县| 左云县| 改则县| 抚远县| 唐河县| 武宣县| 涪陵区| 翁源县| 萨迦县| 遵义县| 曲松县| 恩平市| 新巴尔虎左旗| 呼伦贝尔市| 桂东县| 西贡区| 新绛县| 凤凰县| 宜君县| 洛扎县| 扎赉特旗| 集安市| 苏州市| 宁明县|