国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

面向應用性能管理系統的運行負載預測
DOI:
CSTR:
作者:
作者單位:

四川幼兒師范高等專(zhuān)科學(xué)校

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP183

基金項目:


Operational Load Forecasting for Application Performance Management Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在應用性能管理系統中,系統未來(lái)的負載情況對運維調度有重要的指導意義。在云計算環(huán)境下,彈性伸縮計算能力為調整系統規模提供了可能,根據系統將來(lái)的負載情況可以提前做出相應的調整:可以在負載加重前擴展好集群,保證服務(wù)質(zhì)量;在負載降低之后若預測一定時(shí)間內沒(méi)有負載加重的情況,則可以及時(shí)縮減集群規模,降低企業(yè)運營(yíng)成本。在金融領(lǐng)域,ARIMA模型是常用的時(shí)序預測模型,但其應用需要人工介入分析時(shí)序的平穩性,調參過(guò)程過(guò)于復雜。近年來(lái)神經(jīng)網(wǎng)絡(luò )技術(shù)的發(fā)展帶動(dòng)了人工更智能技術(shù)的發(fā)展,本論文設計并測試了ANN、RNN、GRU、LSTM等神經(jīng)網(wǎng)絡(luò )的負載預測的效果。實(shí)驗結果表明LSTM網(wǎng)絡(luò )預測精準且表現穩定,是系統負載預測的理想模型。

    Abstract:

    In the application performance management system, the future load situation of the system has important guiding significance for the operation and maintenance scheduling. In the cloud computing environment, the elastic scaling computing capability provides the possibility to adjust the system scale. According to the future load conditions of the system, it can be adjusted in advance: You can expand the cluster before the load is increased to ensure the quality of service; after the load is reduced, If no load is expected to increase in a certain period of time, the scale of the cluster can be reduced in time and the operating cost of the enterprise can be reduced. In the financial field, the ARIMA model is a commonly used time-series prediction model, but its application requires manual intervention to analyze the temporal stability, and the adjustment process is too complicated. In recent years, the development of neural network technology has led to the development of artificially more intelligent technologies. This paper designed and tested the effect of neural network load prediction such as ANN, RNN, GRU, and LSTM. Experimental results show that the LSTM network is accurate and stable in performance and is an ideal model for system load prediction.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬健欽.面向應用性能管理系統的運行負載預測計算機測量與控制[J].,2018,26(11):208-212.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-04-09
  • 最后修改日期:2018-04-28
  • 錄用日期:2018-05-02
  • 在線(xiàn)發(fā)布日期: 2018-11-26
  • 出版日期:
文章二維碼
来宾市| 建阳市| 牡丹江市| 兴隆县| 巴中市| 东安县| 南京市| 淮南市| 汨罗市| 外汇| 洛浦县| 萨嘎县| 蓬溪县| 陆良县| 杭锦后旗| 岑巩县| 广昌县| 古交市| 云浮市| 海原县| 永嘉县| 潍坊市| 饶河县| 丹东市| 玛曲县| 阿鲁科尔沁旗| 肇州县| 郸城县| 崇信县| 莒南县| 兰州市| 正宁县| 昔阳县| 南安市| 郧西县| 潍坊市| 武汉市| 根河市| 望城县| 兴业县| 喀什市|