国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積自編碼神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法研究
DOI:
CSTR:
作者:
作者單位:

青島大學(xué) 電氣工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

V233.7

基金項目:


HealthAssessmentMethodofLithiumIonBatteryBasedonConvolutionalSelf-EncodingNeuralnetwork
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前鋰離子電池已被廣泛用作能量存儲系統,在手機、電動(dòng)汽車(chē)和飛機中均有廣泛的應用。然而鋰離子電池在使用過(guò)程中存在一定的危險性,若不能及時(shí)對電池健康狀態(tài)評估(SOH)發(fā)現危險將會(huì )導致十分嚴重的后果。因此,研究一種基于卷積神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法,該方法通過(guò)使用卷積自編碼神經(jīng)網(wǎng)絡(luò )對電池狀態(tài)數據進(jìn)行特征提取,有效提升了評估的準確率,并且神經(jīng)網(wǎng)絡(luò )能夠在使用過(guò)程中不斷進(jìn)行學(xué)習,具有較高的靈活性,最后通過(guò)使用NASA公開(kāi)的鋰電池數據集測試,評估準確率達到93.6%,相比傳統方法有較大提升。

    Abstract:

    At present, lithium-ion batteries have been widely used as energy storage systems, and they are widely used in mobile phones, electric vehicles and aircraft. However, there are certain dangers in the use of lithium ion batteries. If the battery health status (SOH) is not found in time, the danger will lead to very serious consequences. Therefore, a method for assessing the health of lithium-ion batteries based on a convolutional neural network is studied. This method uses a convolutional self-encoding neural network to extract the characteristics of the battery state data, effectively improving the accuracy of the evaluation, and the neural network can Continuous learning during the use process has high flexibility. Finally, by using the lithium battery data set published by NASA, the evaluation accuracy rate is 93.6%, which is greatly improved compared with the traditional method.

    參考文獻
    相似文獻
    引證文獻
引用本文

侯瑞磊,范秋華.基于卷積自編碼神經(jīng)網(wǎng)絡(luò )的鋰離子電池健康狀況評估方法研究計算機測量與控制[J].,2020,28(8):265-269.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-26
  • 最后修改日期:2020-01-16
  • 錄用日期:2020-01-17
  • 在線(xiàn)發(fā)布日期: 2020-08-13
  • 出版日期:
文章二維碼
叶城县| 宁强县| 澳门| 辰溪县| 洪江市| 密云县| 垦利县| 灵川县| 乐至县| 长葛市| 太湖县| 桐乡市| 崇礼县| 潢川县| 南和县| 密山市| 青海省| 霍城县| 寻甸| 耿马| 台东市| 大姚县| 西宁市| 马山县| 枝江市| 贵溪市| 乐东| 儋州市| 通榆县| 蓬安县| 兴宁市| 孝昌县| 宜兴市| 昌乐县| 始兴县| 龙南县| 海阳市| 沐川县| 易门县| 江华| 泽普县|