国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于DenseNet的無(wú)人汽車(chē)制動(dòng)意圖識別方法
DOI:
CSTR:
作者:
作者單位:

長(cháng)安大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


DenseNet-based braking intention recognition method for unmanned vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    無(wú)人汽車(chē)制動(dòng)意圖內部數據由于識別深度增加,會(huì )出現過(guò)度膨脹現象,導致制動(dòng)意圖數據收集完整度低、識別準確率差。提出基于DenseNet的無(wú)人汽車(chē)制動(dòng)示意圖識別方法。選擇數據深度收集系統,收集無(wú)人汽車(chē)制動(dòng)意圖內部數據,結合電池保護模型深度分解汽車(chē)內部運行過(guò)程的能耗,以收集的初始內部數據為標準,整合無(wú)人汽車(chē)制動(dòng)意圖識別數據,拆分整合數據,防止數據過(guò)度膨脹。利用DenseNet的高學(xué)習度以及自適應學(xué)習性,加權均衡處理內部數據標定函數,設置一組基函數,并選擇相應的DenseNet復制內部數據函數,自適應分析復制后的數據,完成制動(dòng)意圖識別。實(shí)驗結果表明,制動(dòng)意圖數據收集完整度提高15.21%,識別準確率增強了23.68%。

    Abstract:

    Due to the increase of the recognition depth, the inner data of the braking intention of the unmanned vehicle will expand excessively, which leads to the low integrity of the data collection and the poor recognition accuracy. Based on densenet, a recognition method of brake diagram of unmanned vehicle is proposed. Select the deep data collection system, collect the internal data of the unmanned vehicle braking intention, combine the battery protection model to deeply decompose the energy consumption of the internal operation process of the vehicle, integrate the identification data of the unmanned vehicle braking intention based on the initial internal data collected, split and integrate the data to prevent the excessive expansion of the data. Using densenet's high learning degree and self-adaptive learning ability, weighting and equalizing the internal data calibration function, setting a group of basis functions, selecting the corresponding densenet to copy the internal data function, self-adaptive analyzing the copied data, and completing the brake intention recognition. The experimental results show that the integrity of brake intention data collection is improved by 15.21%, and the recognition accuracy is improved by 23.68%.

    參考文獻
    相似文獻
    引證文獻
引用本文

伍菁.基于DenseNet的無(wú)人汽車(chē)制動(dòng)意圖識別方法計算機測量與控制[J].,2020,28(6):226-230.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-03-20
  • 最后修改日期:2020-04-10
  • 錄用日期:2020-04-10
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
渝北区| 额济纳旗| 平谷区| 珲春市| 于都县| 西宁市| 三穗县| 鱼台县| 长治县| 中卫市| 湟源县| 黎平县| 贺兰县| 措美县| 修武县| 怀仁县| 宣威市| 商都县| 襄樊市| 汾阳市| 阳江市| 揭东县| 洛隆县| 石渠县| 临湘市| 孝昌县| 衢州市| 保亭| 安顺市| 正安县| 新民市| 广安市| 宁德市| 六盘水市| 云龙县| 五家渠市| 团风县| 泰宁县| 比如县| 乌拉特后旗| 工布江达县|