国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基擴展模型下基于深度學(xué)習的雙選信道估計方法
DOI:
CSTR:
作者:
作者單位:

中國電子科技集團公司第五十四研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Channel Estimation over Doubly Selective Channel Based on Deep Learning under Basis Expansion Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對OFDM系統在高速移動(dòng)環(huán)境下信道的雙選衰落和非平穩特性導致下行鏈路信道估計性能受限的問(wèn)題,提出一種基于基擴展模型(basis expansion model,BEM)并結合深度學(xué)習(deep learning,DL)的信道估計方法。針對高速移動(dòng)環(huán)境信道的雙選衰落特性,使用BEM對信道進(jìn)行建模,把估計大量的信道沖激響應轉變?yōu)楣烙嬌倭康幕禂担瑴p少了待估參數,有效降低了估計復雜度;針對高速移動(dòng)環(huán)境信道非平穩特性,建立了深度神經(jīng)網(wǎng)絡(luò ),通過(guò)離線(xiàn)訓練使其學(xué)習到雙選信道的變化特征,提高了信道估計的準確度。仿真結果表明,在高速移動(dòng)環(huán)境下,與傳統的方法相比,所提信道估計方法,性能提升明顯。

    Abstract:

    Aiming at the problem that the doubly-selective fading and non-stationary characteristics of the Orthogonal Frequency Division Multiplexing (OFDM) system in the high-speed mobile environment lead to the limited performance of the downlink channel estimation, a basis extension model (BEM) combined with deep learning (DL) channel estimation method. Aiming at the doubly-selective fading characteristics of the channel in the high-speed mobile environment, BEM is used to model the channel, which converts the estimation of a large number of channel impulse responses into a small number of basis coefficients, which reduces the parameters to be estimated and effectively reduces the complexity of channel estimation. Aiming at the non-stationary characteristics of the channel in the highly mobile environment, a deep neural network is established, and the change characteristics of the doubly-selective channel are learned through offline training, which improves the accuracy of channel estimation. The simulation results show that in the highspeed mobile environment, com-pared with the traditional methods, the proposed channel estimation method has significant perfor-mance improvement.

    參考文獻
    相似文獻
    引證文獻
引用本文

曹夢(mèng)碩,韓軍,陳寶文.基擴展模型下基于深度學(xué)習的雙選信道估計方法計算機測量與控制[J].,2020,28(10):205-210.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-08-07
  • 最后修改日期:2020-08-26
  • 錄用日期:2020-08-26
  • 在線(xiàn)發(fā)布日期: 2020-10-21
  • 出版日期:
文章二維碼
临武县| 阿瓦提县| 耿马| 绍兴县| 丰顺县| 灵台县| 平顶山市| 武陟县| 成武县| 米泉市| 岳阳县| 鄂托克旗| 静乐县| 普洱| 南京市| 阿坝县| 平陆县| 保德县| 元阳县| 民勤县| 古蔺县| 东丽区| 古田县| 盐池县| 乾安县| 桐乡市| 高唐县| 林周县| 八宿县| 行唐县| 扶绥县| 江安县| 光山县| 崇阳县| 广平县| 宁陕县| 栾城县| 楚雄市| 丹阳市| 丰宁| 广汉市|