国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于機器學(xué)習的刀具表面缺陷檢測及分類(lèi)方法
DOI:
CSTR:
作者:
作者單位:

蘇州大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(52075354)


Tool surface defect detection and classification based on machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    刀具在生產(chǎn)的過(guò)程中,由于人員、機器、環(huán)境等多方面原因,刀具的表面會(huì )出現各種缺陷,如劃痕、碰撞凹坑、涂層剝落和邊緣豁口。這些缺陷會(huì )嚴重影響刀具的質(zhì)量和外觀(guān),對于刀具的缺陷檢測,目前主要采用人工目檢的方式,人工檢測方法效率和準確率都比較低。為解決上述問(wèn)題,提出一種刀具缺陷的自動(dòng)化檢測及分類(lèi)算法。針對刀具圖像的預處理,提出了一種基于雙邊濾波的降噪方法和基于差分的對比度增強算法。對于刀具的缺陷檢測任務(wù),提出了基于圖像差分的缺陷檢測算法。對于缺陷的分類(lèi)任務(wù),提出了一種基于SVM的分類(lèi)算法。即通過(guò)提取缺陷區域的形狀、紋理等特征來(lái)訓練SVM分類(lèi)器。最后對提出的缺陷檢測及分類(lèi)算法進(jìn)行實(shí)驗,結果表明算法的缺陷檢出率達97.2%,分類(lèi)準確率可達94.3%。算法能夠很好的滿(mǎn)足工業(yè)需求,可以替代人工實(shí)現刀具缺陷的自動(dòng)化和高效率檢測。

    Abstract:

    In the process of tool production, due to personnel, machinery, environment and other reasons, the surface of the tool will appear a variety of defects, such as scratches, impact pits, shedding and edge break. These defects will seriously affect the quality and appearance of the tool, for the tool defect detection, the current main method is manual visual inspection, manual detection method efficiency and accuracy are low. In order to solve the above problems, an automatic tool defect detection and classification algorithm is proposed. For tool image preprocessing, a noise reduction method based on bilateral filtering and contrast enhancement algorithm based on difference are proposed. For tool defect detection task, a defect detection algorithm based on image difference is proposed. A classification algorithm based on SVM is proposed for defect classification task. The SVM classifier is trained by extracting the shape, texture and other features of the defect area. Finally, the experiment of the proposed defect detection and classification algorithm is carried out, and the results show that the defect detection rate of the algorithm is 99.7%, and the classification accuracy is 95%. The algorithm can meet the needs of industry and replace the manual to realize the automation and high efficiency detection of tool defects.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉浩,陳再良,張良.基于機器學(xué)習的刀具表面缺陷檢測及分類(lèi)方法計算機測量與控制[J].,2021,29(6):64-68.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-12-09
  • 最后修改日期:2020-12-25
  • 錄用日期:2020-12-25
  • 在線(xiàn)發(fā)布日期: 2021-07-07
  • 出版日期:
文章二維碼
甘肃省| 海口市| 大安市| 南康市| 靖宇县| 惠来县| 芮城县| 镇坪县| 丰城市| 长武县| 开原市| 庆城县| 大竹县| 固阳县| 兴仁县| 鹤壁市| 绵阳市| 阳江市| 依安县| 渝北区| 九寨沟县| 福建省| 通海县| 堆龙德庆县| 宜兴市| 怀安县| 上蔡县| 江北区| 崇仁县| 剑河县| 翁牛特旗| 澄迈县| 张家港市| 余庆县| 象山县| 太康县| 汶上县| 海林市| 邢台市| 永春县| 定日县|