国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

鐵路客運車(chē)站旅客異常行為智能識別和監測方法研究
DOI:
CSTR:
作者:
作者單位:

北京經(jīng)緯信息技術(shù)有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

中國鐵道科學(xué)研究院院基金,中國鐵路總公司重大科研課題


Research on intelligent recognition and monitoring method of railway station passenger abnormal behavior
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前國內多數車(chē)站仍采用視頻回放方式識別旅客異常行為,無(wú)法保障效率和精確度,影響車(chē)站安全穩定運營(yíng)。為提升車(chē)站旅客異常行為監測的智能化水平,采用CNN算法,選取站臺區域越界旅客為重點(diǎn)研究對象,對旅客異常行為進(jìn)行智能識別。選取候車(chē)大廳、檢票口等區域,采用MCNN算法對人群密度進(jìn)行識別和監控。借助仿真平臺和車(chē)站現場(chǎng)數據模擬驗證,結果顯示距站臺第一、二邊界內的人數均占當前視頻畫(huà)面總人數12%左右,識別率達90%,該結果可為車(chē)站安全保障業(yè)務(wù)和客運組織優(yōu)化提供作業(yè)指導,以保障車(chē)站安全穩定運營(yíng)。

    Abstract:

    At present, most stations in China still use video playback to identify abnormal behavior of passengers, with low efficiency and accuracy. In order to improve the intelligence of station passenger abnormal behavior monitoring, we adopt Convolutional Neural Network(CNN) algorithm, select the cross-border passengers in the platform area as the research object, and conduct intelligent recognition for the abnormal behavior to intelligently identify their abnormal behaviors. The Multi-Column Convolutional Neural Network(MCNN) algorithm is used to identify and monitor the crowd density in the waiting hall, ticket gate and other areas. Finally, we build a simulation platform, using the real video monitoring data to verify the models. With the help of simulation platform and station field data simulation verification, the results show that the number of people within the first and second boundaries of the platform accounts for about 12% of the total number of current video images, and the recognition rate is up to 90%. The results can provide operation guidance for the station safety guarantee business and passenger transport organization optimization, so as to ensure the safe and stable operation of the station.

    參考文獻
    相似文獻
    引證文獻
引用本文

李君,陳瑞鳳,徐春婕,呂曉軍.鐵路客運車(chē)站旅客異常行為智能識別和監測方法研究計算機測量與控制[J].,2021,29(9):37-42.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-02-09
  • 最后修改日期:2021-03-04
  • 錄用日期:2021-03-05
  • 在線(xiàn)發(fā)布日期: 2021-09-23
  • 出版日期:
文章二維碼
乌审旗| 宁城县| 曲周县| 七台河市| 苍梧县| 沁源县| 游戏| 赤城县| 鄂尔多斯市| 枣阳市| 太保市| 藁城市| 怀柔区| 安塞县| 永仁县| 衡阳市| 隆化县| 黎川县| 门头沟区| 高碑店市| 晋中市| 延寿县| 苏州市| 股票| 重庆市| 奈曼旗| 若尔盖县| 淮南市| 昭平县| 葵青区| 屏山县| 抚松县| 陈巴尔虎旗| 文成县| 武夷山市| 屏南县| 无为县| 杨浦区| 太湖县| 浮梁县| 石棉县|