国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于LSTM神經(jīng)網(wǎng)絡(luò )的管道缺陷模式識別方法研究
DOI:
CSTR:
作者:
作者單位:

1.江蘇省常州市常州大學(xué)機械工程學(xué)院過(guò)程裝備與控制工程系;2.江蘇省常州市常州大學(xué)機械工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(No. 52075050);江蘇省教育廳自然科學(xué)重大項目(No.19KJA43004);江蘇省研究生科研與實(shí)踐創(chuàng )新計劃項目 (SJCX19_0662)


Research on the Recognition Method for Pipeline Defect Pattern Based on LSTM Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對復雜環(huán)境下,管道振動(dòng)信號特征微弱難以提取的問(wèn)題,提出一種基于長(cháng)短時(shí)記憶網(wǎng)絡(luò )(LSTM)深度學(xué)習神經(jīng)網(wǎng)絡(luò )的管道缺陷模式識別方法。首先利用改進(jìn)型自適應噪聲的完全集合經(jīng)驗模態(tài)分解(ICEEMDAN)對采集的原始信號進(jìn)行分解得到若干個(gè)固有模態(tài)函數(IMF)分量,隨后根據信息熵理論計算IMF分量的近似熵作為管道典型狀態(tài)的特征值構造特征向量集合,然后構造LSTM深度學(xué)習神經(jīng)網(wǎng)絡(luò )訓練模型并調節深度神經(jīng)網(wǎng)絡(luò )在訓練過(guò)程中的相關(guān)參數進(jìn)行網(wǎng)絡(luò )的結構優(yōu)化,最后將特征向量輸入到LSTM神經(jīng)網(wǎng)絡(luò )模型進(jìn)行訓練和識別。結果表明:針對管道振動(dòng)信號特征微弱難以提取的問(wèn)題,該方法對管道缺陷模式識別的準確率達到了95%,在消除管道振動(dòng)信號的背景噪聲、挖掘特征信息和保證識別準確性方面優(yōu)勢明顯。

    Abstract:

    Aiming at the difficulty in feature extraction from pipeline vibration signal in complex environments, a pipeline defect pattern recognition method based on Long Short-Term Memory network (LSTM) deep learning neural network is proposed here. Firstly, the collected original signal is decomposed for several intrinsic modal function (IMF) components with the Improved Complete Ensemble Empirical Mode Decomposition with adaptive noise (ICEEMDAN). Then the approximate entropy of the IMF component is calculated according to the information entropy theory as the eigenvalues of the pipeline running state to construct the feature vector set. And then the typical LSTM deep learning neural network training model is constructed and the relevant parameters of the deep neural network amid the training process are adjusted to optimize the network structure. Finally, the feature vector is input to the LSTM neural network model for training and recognition. The research results show that: for the problem that the pipeline vibration signal features are weak and difficult to extract, the accuracy of the method for pipeline defect pattern recognition has reached 95%, and it has obvious advantages in eliminating the background noise of the pipeline vibration signal, mining feature information, and ensuring recognition accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

別鋒鋒,郭越,楊罡,彭劍,趙威.基于LSTM神經(jīng)網(wǎng)絡(luò )的管道缺陷模式識別方法研究計算機測量與控制[J].,2021,29(10):204-210.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-03-16
  • 最后修改日期:2021-04-24
  • 錄用日期:2021-04-25
  • 在線(xiàn)發(fā)布日期: 2021-11-11
  • 出版日期:
文章二維碼
浠水县| 永仁县| 通榆县| 达拉特旗| 出国| 兴海县| 雅安市| 眉山市| 陆丰市| 自治县| 乌恰县| 酉阳| 新丰县| 桓台县| 北安市| 岢岚县| 旌德县| 龙江县| 海宁市| 商洛市| 汉沽区| 清流县| 西华县| 万山特区| 林州市| 临清市| 天峨县| 诸城市| 金坛市| 连南| 定西市| 洞口县| 安义县| 会泽县| 庄浪县| 南华县| 革吉县| 龙门县| 桐乡市| 镇远县| 凤台县|