国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度森林的無(wú)線(xiàn)傳感器網(wǎng)絡(luò )故障分類(lèi)算法
DOI:
CSTR:
作者:
作者單位:

哈爾濱理工大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金資助項目(青年科學(xué)基金項目,61903104)


Fault classification algorithm for wireless sensor networks based on deep forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對無(wú)線(xiàn)傳感器網(wǎng)絡(luò )(WSN)節點(diǎn)容易出現故障從而導致網(wǎng)絡(luò )癱瘓的問(wèn)題,提出了一種基于改進(jìn)的深度森林的無(wú)線(xiàn)傳感器網(wǎng)絡(luò )故障分類(lèi)方法。深度森林是基于森林的集成學(xué)習方法,其輸入是多維特征向量,特征向量將由多粒度掃描和級聯(lián)森林這兩個(gè)主要組成部分進(jìn)行處理,多粒度掃描通過(guò)處理數據之間的關(guān)系來(lái)增強數據表示的能力,級聯(lián)森林用于分類(lèi)或預測。針對級聯(lián)森林部分隨著(zhù)層數的增加可能造成的維數問(wèn)題進(jìn)行優(yōu)化后,將該算法用于故障分類(lèi)可以提高故障診斷的精確度。在仿真驗證階段,將本算法與深度神經(jīng)網(wǎng)絡(luò )(DNN)和支持向量機(SVM)算法進(jìn)行對比。結果顯示,本算法可以準確的識別出不同的故障類(lèi)型,并且在損壞故障和電源故障的識別達到了最高精度,綜合平均精度在98.4%。對偏移故障、漂移故障和通信故障的識別略低于卷積神經(jīng)網(wǎng)絡(luò )(CNN)算法,但綜合訓練時(shí)間、參數調節來(lái)看,該算法更能滿(mǎn)足實(shí)際工程的需要。

    Abstract:

    Aiming at the problem that wireless sensor network (WSN) nodes are prone to failure, a fault classification method for WSN based on improved deep forest is proposed. Deep forest is an integrated learning method based on forest. Its input is multidimensional feature vector, which is processed by the two main components of multi-granularity scan and cascade forest. The multi-granularity scan enhances the ability of data representation by processing the relationship between data, and the cascade forest is used for classification or prediction. After optimizing the dimension problem caused by the increase of layers in cascaded forest, the algorithm is applied to fault classification to improve the accuracy of fault diagnosis. At the simulation stage, the proposed algorithm was compared with deep neural network (DNN) and support vector machine (SVM) algorithms. The results show that this algorithm can accurately identify different fault types, and the identification of damage fault and power fault has reached the highest accuracy, the comprehensive average accuracy of 98.4%. The identification of offset fault, drift fault and communication fault is slightly lower than that of convolutional neural network (CNN) algorithm, but the algorithm can better meet the needs of practical engineering in terms of comprehensive training time and parameter adjustment.

    參考文獻
    相似文獻
    引證文獻
引用本文

張鵬,李志,邸希元.基于深度森林的無(wú)線(xiàn)傳感器網(wǎng)絡(luò )故障分類(lèi)算法計算機測量與控制[J].,2022,30(1):26-33.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-06-07
  • 最后修改日期:2021-08-02
  • 錄用日期:2021-08-03
  • 在線(xiàn)發(fā)布日期: 2022-01-24
  • 出版日期:
文章二維碼
武强县| 西吉县| 长泰县| 杭锦旗| 宁武县| 政和县| 乌什县| 江孜县| 泰兴市| 德保县| 平顺县| 吉安市| 绥化市| 苏尼特右旗| 诸暨市| 磴口县| 九龙县| 库伦旗| 聊城市| 全南县| 防城港市| 辉县市| 南投市| 兰西县| 肥乡县| 西平县| 梁平县| 武定县| 南川市| 孝昌县| 门头沟区| 页游| 黑水县| 霍山县| 呈贡县| 高陵县| 五指山市| 靖宇县| 花莲市| 南安市| 武定县|