国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的航空發(fā)動(dòng)機滑油磨粒檢測研究
DOI:
CSTR:
作者:
作者單位:

西安航空學(xué)院 計算機學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP181;TP391

基金項目:

校級科研立項項目(2020KY0204)


Research on Abrasive Detection of Aero-engie Lubricating Oil Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對滑油中磨粒形狀復雜且尺寸大小不一,傳統滑油磨粒檢測方法存在時(shí)效性差、檢測尺度小、精度低、非鐵磁性磨粒不能檢測等缺點(diǎn)。本文設計了一種基于深度學(xué)習的航空發(fā)動(dòng)機滑油磨粒檢測方法。基于連續流微流控芯片的滑油圖像采樣方法,構建滑油圖像采樣系統;設計圖像增強方法,進(jìn)行圖像數據增強消融試驗研究,針對YOLOv3模型和Faster RCNN模型進(jìn)行精度測試,結果表明消融試驗后的YOLOv3模型檢測能力明顯優(yōu)于Faster RCNN模型;為減少消融后YOLOv3模型的誤檢率,提出SER算法以?xún)?yōu)化該模型的推理置信度閾值。研究結果表明滑油磨粒檢測方法可解決傳統測試中存在的問(wèn)題,且在0.35的置信度閾值下, YOLOv3模型的檢測結果能夠達到94.2%的召回率和95.9%的精確度。

    Abstract:

    In view of the complex shapes and different sizes of abrasive grains in lubricating oil, traditional lubricating oil abrasive grain detection methods have disadvantages such as poor timeliness, small detection scale, low accuracy, and non-ferromagnetic abrasive grains cannot be detected. The paper designs an aero-engine lubricating oil abrasive grain detection method based on deep learning. Based on the continuous flow microfluidic chip-based lubricant image sampling method, the lubricant image sampling system was constructed; The image enhancement method was designed, and the image data enhancement ablation experiment was carried out, the test accuracy of the YOLOv3 model and the Faster RCNN model was compared. The results show after the ablation test the detection ability of the YOLOv3 model is significantly better than the Faster RCNN model; in order to reduce the false detection rate of the YOLOv3 model after ablation, the SER algorithm is proposed to optimize the model’s inference confidence threshold. The research results show that the lubricating oil abrasive grain detection method can solve the problems in the traditional test, and under the confidence threshold of 0.35, the detection result of the YOLOv3 model can achieve a recall rate of 94.2% and an accuracy of 95.9%.

    參考文獻
    相似文獻
    引證文獻
引用本文

侯媛媛,李江紅,薛軍印.基于深度學(xué)習的航空發(fā)動(dòng)機滑油磨粒檢測研究計算機測量與控制[J].,2022,30(4):14-22.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-09-24
  • 最后修改日期:2021-11-09
  • 錄用日期:2021-11-09
  • 在線(xiàn)發(fā)布日期: 2022-04-21
  • 出版日期:
文章二維碼
霍城县| 隆德县| 裕民县| 娄烦县| 宁安市| 黔江区| 金华市| 咸丰县| 隆尧县| 英吉沙县| 琼结县| 兴安盟| SHOW| 襄城县| 皋兰县| 田林县| 琼结县| 蒙城县| 姚安县| 福泉市| 广元市| 尉犁县| 雷波县| 仙游县| 衡南县| 东明县| 福海县| 田阳县| 秭归县| 罗江县| 甘洛县| 遂宁市| 库车县| 鸡东县| 博兴县| 宁德市| 南靖县| 大厂| 海兴县| 米泉市| 凉城县|