国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5s的機坪特種車(chē)輛檢測算法研究
DOI:
CSTR:
作者:
作者單位:

中國民航大學(xué) 電子信息與自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

391

基金項目:

國家重點(diǎn)研發(fā)專(zhuān)項-綜合交通運輸與智能交通重點(diǎn)專(zhuān)項(2018YFB1601200);中國民航大學(xué)中央高校基本科研業(yè)務(wù)費專(zhuān)項資金(No.3122019047)


Research on Apron Special Vehicle Detection Algorithm Based on Improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    機坪特種車(chē)輛作為航班保障服務(wù)的重要一環(huán),其種類(lèi)多,形狀各異;目前已有的車(chē)輛檢測算法在識別機坪特種車(chē)輛時(shí)檢測精度不高,在遮擋時(shí)無(wú)法檢測;針對于此問(wèn)題,提出了一種基于改進(jìn)YOLOv5s的機坪特種車(chē)輛檢測算法;為了在機坪特種車(chē)輛檢測中快速、準確的定位感興趣區域,在主干網(wǎng)絡(luò )中融合協(xié)同注意力機制;考慮到機坪監控場(chǎng)景下特種車(chē)輛尺度差別較大的情況,為了能夠增強對不同尺度特種車(chē)輛的檢測能力,提出了四尺度特征檢測網(wǎng)絡(luò )結構;為了提高檢測網(wǎng)絡(luò )多尺度特征融合能力,結合加權雙向特征金字塔結構對網(wǎng)絡(luò )的Neck部分進(jìn)行改進(jìn);將改進(jìn)后的算法在自建的機坪特種車(chē)輛數據集上進(jìn)行訓練、測試,實(shí)驗結果表明,與YOLOv5s相比,改進(jìn)后算法的精確度提升了1.6%,召回率提升了3.5%,平均精度mAP0.5和mAP0.5:0.95分別有2.3%和3.3%的提升。

    Abstract:

    As an important part of flight guarantee service, apron special vehicles have various types and shapes. The existing vehicle detection algorithms suffer from low detection accuracy when identifying special vehicles on the apron and cannot detect when obscured. Aiming at this problem, an algorithm of special vehicle detection based on improved YOLOv5s is proposed. To locate the region of interest quickly and accurately in the detection of special vehicles on the apron, the coordinate attention mechanism is integrated into the backbone network. Considering that the scale of special vehicles varies greatly in the apron monitoring scene, a four-scale feature detection network structure is proposed to enhance the detection ability of special vehicles with different scales. To improve the multi-scale feature fusion capability of the detection network, the neck part of the network is improved by combining the weighted bidirectional feature pyramid structure. The improved algorithm is trained and tested on the self-built apron special vehicle dataset. The experimental results show that compared with YOLOv5s, the precision of the proposed algorithm is improved by 1.6%, the recall is improved by 3.5%, and the average precision mAP0.5 and mAP0.5:0.95 are improved by 2.3% and 3.3%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

諸葛晶昌,李想.基于改進(jìn)YOLOv5s的機坪特種車(chē)輛檢測算法研究計算機測量與控制[J].,2023,31(6):27-33.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-10-11
  • 最后修改日期:2022-11-07
  • 錄用日期:2022-11-07
  • 在線(xiàn)發(fā)布日期: 2023-06-15
  • 出版日期:
文章二維碼
红原县| 互助| 古浪县| 云和县| 海兴县| 包头市| 上林县| 剑河县| 雷波县| 平塘县| 永靖县| 梁平县| 庐江县| 寻乌县| 古交市| 凌云县| 通辽市| 桓台县| 杂多县| 诸暨市| 九江市| 六枝特区| 邢台市| 乡宁县| 山阴县| 河北区| 凌海市| 潞西市| 浮梁县| 安陆市| 南通市| 绥江县| 巴里| 蓬莱市| 井研县| 三原县| 五峰| 商洛市| 图们市| 萨迦县| 武穴市|