国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)VGG16的超短波時(shí)頻譜圖分類(lèi)方法
DOI:
CSTR:
作者:
作者單位:

中國電子科技集團公司第五十四研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Classification method of ultrashortwave time spectrum based on improved VGG16
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    現代戰場(chǎng)電磁環(huán)境日益復雜,戰術(shù)通信網(wǎng)臺主要集中在超短波頻段。而未來(lái)的技術(shù)偵察對智能化、大數據處理的支撐需求越來(lái)越強烈。為實(shí)現超短波盲信號的分類(lèi),提出了一種將盲信號的時(shí)頻譜圖與優(yōu)化后VGG16網(wǎng)絡(luò )相結合的分類(lèi)方法。該方法首先將電磁戰場(chǎng)中實(shí)際采集到的超短波盲信號轉換為時(shí)頻譜圖,然后通過(guò)遷移學(xué)習將其與優(yōu)化后的VGG16卷積神經(jīng)網(wǎng)絡(luò )結合起來(lái),并將空洞卷積引入網(wǎng)絡(luò ),完成了對超短波盲信號的分類(lèi)。實(shí)驗結果表明,優(yōu)化后的VGG16網(wǎng)絡(luò )比原網(wǎng)絡(luò )有更高的準確率,達到了93.1%。當將空洞卷積引入到優(yōu)化后的VGG16網(wǎng)絡(luò )的第7層和第10層時(shí),識別率達到最高為92.2%,學(xué)習時(shí)間減少了34.1%,大大減少了模型的訓練時(shí)長(cháng),驗證了空洞卷積在超短波盲信號分類(lèi)識別上的有效性。

    Abstract:

    The electromagnetic environment of modern battlefield is becoming more and more complex, and the tactical communication network stations mainly focus on the ultra-short wave frequency band. The future technical reconnaissance has an increasingly strong support demand for intelligent and big data processing. In order to realize the classification of ultra-short wave blind signals, a classification method combining the time spectrum of blind signals with the optimized VGG16 network is proposed. The method first converts the actual VHF blind signals collected in the electromagnetic battlefield into time-spectrum maps, then combines them with the optimized VGG16 convolutional neural network through transfer learning, and introduces the cavity convolution into the network to complete the classification of VHF blind signals. Experimental results show that the optimized VGG16 network has a higher accuracy than the original network, reaching 93.1%. When the cavity convolution is introduced into the 7th and 10th layers of the optimized VGG16 network, the recognition rate reaches the highest of 92.2%, and the learning time is reduced by 34.1%, which greatly reduces the training time of the model, and verifies the effectiveness of cavity convolution in VGG16 blind signal classification and recognition.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬博昂,張海瑛.基于改進(jìn)VGG16的超短波時(shí)頻譜圖分類(lèi)方法計算機測量與控制[J].,2022,30(12):211-217.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-11-04
  • 最后修改日期:2022-11-08
  • 錄用日期:2022-11-08
  • 在線(xiàn)發(fā)布日期: 2022-12-22
  • 出版日期:
文章二維碼
凯里市| 徐闻县| 汤阴县| 独山县| 长阳| 通化市| 潮州市| 清新县| 兴山县| 济南市| 喀喇沁旗| 罗源县| 安平县| 福泉市| 河西区| 永川市| 景德镇市| 当雄县| 前郭尔| 泉州市| 闻喜县| 泰州市| 平阴县| 汪清县| 广平县| 泗洪县| 白水县| 梁河县| 宁德市| 镇平县| 兖州市| 苗栗市| 高密市| 临夏市| 万山特区| 兖州市| 镇安县| 得荣县| 漯河市| 泸水县| 台南市|