国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOX的落石檢測方法
DOI:
CSTR:
作者:
作者單位:

1.四川數字交通科技股份有限公司;2.成都理工大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

四川省科技廳應用基礎研究項目(2021YJ0335)


Rockfall detection method based on improved YOLOX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    山坡地區是落石頻發(fā)的區域,憑人力難以及時(shí)發(fā)現災害的發(fā)生。為及時(shí)檢測到落石的發(fā)生并做出應對措施,提出一種基于改進(jìn)YOLOX的落石檢測方法,自動(dòng)檢測并報告落石的發(fā)生情況;通過(guò)自制落石數據集訓練YOLOX網(wǎng)絡(luò ),優(yōu)化空間金字塔池化結構,獲取更多語(yǔ)義信息,并引入ECA-Net(Efficient Channel Attention Module,高效通道注意力模塊),提高特征的提取能力和特征間的信息傳播,同時(shí)改進(jìn)損失函數并使用數據增強,提高網(wǎng)絡(luò )訓練效果;實(shí)驗結果表明,改進(jìn)YOLOX算法的mAP@0.5為92.50%,每秒檢測幀數為62.6,相較于YOLOX算法,mAP@0.5提高3.45%,每秒檢測幀數上漲0.3;與原算法相比,在不損失性能的情況下,精度有較大的提升,同時(shí)滿(mǎn)足圖片與視頻數據的實(shí)時(shí)檢測要求。

    Abstract:

    Hillside areas are prone to falling rocks, so it is difficult to detect the occurrence of disasters in time by manpower. In order to timely detect the occurrence of falling rocks and take countermeasures, a method of falling rocks detection based on improved YOLOX is proposed to automatically detect and report the occurrence of falling rocks. The self-made rockfall data set is used to train YOLOX network, optimize the spatial pyramid pool structure, and obtain more semantic information. The attention mechanism of ECA-Net(Efficient Channel Attention Module) channel is introduced to improve the feature extraction ability and information transmission between features. Meanwhile, the loss function is improved and data enhancement is used to improve the network training effect. The experimental results show that mAP@0.5 of the improved YOLOX algorithm is 92.50%, and the number of frames detected per second is 62.6. Compared with the YOLOX algorithm, mAP@0.5 is 3.45% higher and the number of frames detected per second is 0.3 higher. Compared with the original algorithm, the accuracy is improved greatly without loss of performance, and the real-time detection requirements of image and video data are met.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳墾,歐鷗,楊長(cháng)志,龔帥,歐陽(yáng)飛,向東升.基于改進(jìn)YOLOX的落石檢測方法計算機測量與控制[J].,2023,31(11):53-59.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-01-05
  • 最后修改日期:2023-02-27
  • 錄用日期:2023-02-28
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
叶城县| 潮安县| 马鞍山市| 连山| 大方县| 清苑县| 西昌市| 禄丰县| 沿河| 永济市| 藁城市| 浮梁县| 开鲁县| 泸州市| 昭平县| 武安市| 雷州市| 鄂伦春自治旗| 长汀县| 石首市| 全椒县| 宁陵县| 札达县| 横山县| 鲁甸县| 金门县| 荃湾区| 柯坪县| 汕头市| 准格尔旗| 陕西省| 三河市| 池州市| 枣庄市| 咸宁市| 牙克石市| 德清县| 黑龙江省| 兖州市| 聊城市| 泸州市|