国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PSO-KM聚類(lèi)分析的通信網(wǎng)絡(luò )惡意攻擊代碼檢測方法
DOI:
CSTR:
作者:
作者單位:

蘇州高博軟件技術(shù)職業(yè)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省高等職業(yè)教育高水平專(zhuān)業(yè)群(蘇教職函[2021] 1號);江蘇省高等職業(yè)教育高水平骨干專(zhuān)業(yè)建設項目(蘇教高[2017] 17號)


Detection Method of Malicious Attack Codes in Communication Network Based on PSO-KM Cluster Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    惡意代碼的快速發(fā)展嚴重影響到網(wǎng)絡(luò )信息安全,傳統惡意代碼檢測方法對網(wǎng)絡(luò )行為特征劃分不明確,導致惡意代碼檢測的結果不夠精準,研究基于PSO-KM聚類(lèi)分析的通信網(wǎng)絡(luò )惡意攻擊代碼檢測方法。分析通信網(wǎng)絡(luò )中惡意攻擊代碼的具體內容,從網(wǎng)絡(luò )層流動(dòng)軌跡入手提取網(wǎng)絡(luò )行為,在MFAB-NB框架內確定行為特征。通過(guò)歸一化算法選擇初始處理中心,將分類(lèi)的通信網(wǎng)絡(luò )行為特征進(jìn)行歸一化處理,判斷攻擊速度和位置。實(shí)時(shí)跟進(jìn)通信網(wǎng)絡(luò )數據傳輸全過(guò)程,應用適應度函數尋求惡意代碼更新最優(yōu)解。基于PSO-KM聚類(lèi)分析技術(shù)構建惡意代碼數據特征集合,利用小批量計算方式分配特征聚類(lèi)權重,以加權平均值作為分配依據檢測惡意攻擊代碼,實(shí)現檢測方法設計。實(shí)驗結果表明:在本文方法應用下對惡意攻擊代碼檢測的正確識別率可以達到99%以上,誤報率可以控制在0.5%之內,具有應用價(jià)值。

    Abstract:

    The rapid development of malicious code has seriously affected the network information security. The traditional malicious code detection methods do not clearly divide the network behavior characteristics, resulting in inaccurate malicious code detection results. Therefore, research on malicious attack code detection methods for communication networks based on PSO-KM clustering analysis. The specific content of malicious attack code in communication network is analyzed, and the network behavior is extracted from the flow trajectory of network layer, and the behavior characteristics are determined in the MFAB-NB framework. The initial processing center is selected by the normalization algorithm, and the behavior characteristics of the classified communication network are normalized to judge the attack speed and location. Follow up the whole process of communication network data transmission in real time and apply fitness function to seek the optimal solution of malicious code updating. The feature set of malicious code data was constructed based on the PSO-KM clustering analysis technology, and the weight of the feature cluster was allocated using the small batch calculation method. The weighted average value was used as the distribution basis to detect the malicious attack code, and the detection method was designed. The experimental results show that the correct recognition rate of malicious attack code detection can reach more than 99% and the false positive rate can be controlled within 0.5% under the application of this method, which has application value.

    參考文獻
    相似文獻
    引證文獻
引用本文

李梅,朱明宇.基于PSO-KM聚類(lèi)分析的通信網(wǎng)絡(luò )惡意攻擊代碼檢測方法計算機測量與控制[J].,2024,32(1):8-15.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-02-07
  • 最后修改日期:2023-04-07
  • 錄用日期:2023-04-10
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
中西区| 天门市| 肥乡县| 边坝县| 牡丹江市| 蓝田县| 苍梧县| 周口市| 杭州市| 集安市| 鄂尔多斯市| 丰城市| 宝清县| 贵南县| 房产| 濉溪县| 囊谦县| 滁州市| 韩城市| 鄂温| 唐海县| 启东市| 滕州市| 香格里拉县| 新泰市| 榆中县| 桦甸市| 莆田市| 阿鲁科尔沁旗| 黔西| 晋江市| 扶沟县| 吴堡县| 定西市| 东乡县| 五莲县| 钟祥市| 昌吉市| 商丘市| 淳化县| 塔城市|