国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積神經(jīng)網(wǎng)絡(luò )的滾動(dòng)軸承故障診斷方法
DOI:
CSTR:
作者:
作者單位:

海軍航空大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TN911.23;TP206.3

基金項目:

國家部委預研基金資助(9140A27020214JB1446)


Bearing fault diagnosis algorithm based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了簡(jiǎn)單、準確地進(jìn)行軸承故障診斷,結合深度學(xué)習理論,對基于卷積神經(jīng)網(wǎng)絡(luò )的滾動(dòng)軸承故障診斷方法進(jìn)行了研究。首先,選用了結構相對簡(jiǎn)單的LeNet5卷積神經(jīng)網(wǎng)絡(luò );然后,對軸承振動(dòng)信號原始數據進(jìn)行截取和歸一化處理后直接生成生成二維矩陣作為神經(jīng)網(wǎng)絡(luò )輸入;接著(zhù),優(yōu)選卷積核大小、批大小、學(xué)習率及迭代次數等網(wǎng)絡(luò )模型參數;最后,應用sigmoid函數進(jìn)行多標簽分類(lèi)。實(shí)驗結果表明,該方法能有效識別正常狀態(tài)及不同損傷程度下的內圈、外圈、滾動(dòng)體故障狀態(tài),識別準確率達到99.50%以上水平。基于卷積神經(jīng)網(wǎng)絡(luò )的滾動(dòng)軸承故障診斷方法不僅在一定程度上可以簡(jiǎn)化故障診斷的過(guò)程,而且可以充分利用卷積神經(jīng)網(wǎng)絡(luò )模型的優(yōu)勢實(shí)現高效準確地故障診斷。

    Abstract:

    In order to diagnose the bearing fault simply and accurately, combined with deep learning theory, a mode based on convolutional neural network(CNN) was proposed. Firstly, the LeNet5 CNN with simple model architecture was chosed;Secondly, using the raw data of the bearing vibration signal which is intercepted and normalized, a two-dimensional matrix is generated directly as the input of CNN; Thirdly, the convolution, kernel batch, learning ratesize and the iterations was optimized. Finally, the sigmoid function was choiced to classify. The experimental results show that the method can identify the normal, inner ring fault, outer ring fault and rolling fault effectively and the recognition accuracy can reach a level of over 99.50%. Bearing fault diagnosis algorithm based on convolutional neural network not only simplifies the process of fault diagnosis to a certain extent, but also fully utilizes the advantages of CNN models to achieve efficient and accurate fault diagnosis.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉林密,崔偉成,李浩然,桑德一.基于卷積神經(jīng)網(wǎng)絡(luò )的滾動(dòng)軸承故障診斷方法計算機測量與控制[J].,2023,31(9):9-15.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-01
  • 最后修改日期:2023-04-17
  • 錄用日期:2023-04-17
  • 在線(xiàn)發(fā)布日期: 2023-09-18
  • 出版日期:
文章二維碼
滦南县| 葵青区| 西城区| 连山| 安徽省| 庆城县| 神农架林区| 板桥市| 井陉县| 保德县| 张家川| 商城县| 布尔津县| 柳江县| 海阳市| 莒南县| 益阳市| 舟曲县| 托克逊县| 万载县| 庐江县| 巢湖市| 绥滨县| 门头沟区| 德化县| 通化县| 定陶县| 青河县| 晋城| 上栗县| 阳西县| 来宾市| 蓬溪县| 华容县| 泽州县| 渭南市| 措勤县| 永新县| 南丹县| 奇台县| 宣化县|