国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

鐵路接觸網(wǎng)支柱的圖像序列自適應識別方法
DOI:
CSTR:
作者:
作者單位:

1.中車(chē)南京浦鎮車(chē)輛有限公司;2.中國鐵道科學(xué)研究院集團有限公司 基礎設施檢測研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

U226.8

基金項目:

時(shí)速 400 公里綜合檢測關(guān)鍵技術(shù)研究與設備研制


Image Sequence Adaptive Recognition Method for Railway Catenary Pillar
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    接觸網(wǎng)支柱數字化管理是電氣化鐵路運維的關(guān)鍵環(huán)節,基于移動(dòng)視頻建立接觸網(wǎng)支柱數字臺賬是高效、經(jīng)濟、便捷的技術(shù)手段。為實(shí)現對于移動(dòng)視頻圖像序列中接觸網(wǎng)支柱桿號的精準識別,提出了一種基于區域相關(guān)和改進(jìn)SVTR網(wǎng)絡(luò )的接觸網(wǎng)支柱識別算法。針對視頻圖像中接觸網(wǎng)支柱區域重疊、結構模式復雜的特點(diǎn),采用了YOLO v4網(wǎng)絡(luò )對單幀圖像中支柱區域和號牌標識區域分別進(jìn)行檢測,并通過(guò)測算交疊區域來(lái)獲得距觀(guān)察點(diǎn)最近的桿位和對應的號牌區域。此外,針對接觸網(wǎng)桿號牌尺度多樣性和字符變長(cháng)的問(wèn)題,在桿號文字識別問(wèn)題中采用了SVTR-tiny網(wǎng)絡(luò ),并進(jìn)一步引入遷移學(xué)習方法增強模型對于復雜桿號的識別精度和對于不同線(xiàn)路場(chǎng)景的泛化性能。通過(guò)在實(shí)際高鐵線(xiàn)路采集的移動(dòng)視頻數據集上進(jìn)行測試,結果表明算法在移動(dòng)視頻中視野最近桿位桿號區域的定位檢出率可達98.01%,桿號文本的識別準確率達到96.13%,適用于我國高速鐵路主要干線(xiàn)建設配套的接觸網(wǎng)支柱結構。

    Abstract:

    Digital management of the contact network pillars is a critical component of operating and maintaining electrified railways. Creating a digital ledger of catenary pillars based on mobile video is an efficient, cost-effective, and convenient technological method. To achieve accurate recognition of the plate numbers on catenary pillars in mobile video image sequence, we propose a catenary pillar recognition algorithm based on region correlation and an improved SVTR network. Firstly, to address the challenges posed by overlapping contact network pillar areas and complex structural patterns in video images, we use the YOLO v4 network to separately detect catenary pillar areas and number plate areas in single-frame images. The nearest catenary pillar position and corresponding number plate area are then determined by calculating overlapping areas. Furthermore, we use an improved SVTR-tiny network for catenary pillar number text recognition to address the issues of diverse pillar number plate scales and variable character length, and transfer learning methods are introduced to enhance the model’s recognition accuracy for complex plate numbers and its generalization performance to different line scenes. Through testing on a mobile video dataset collected from actual high-speed railway lines, the test results show that the algorithm achieves a positioning recall rate of 98.01% for the nearest pillar number in the field of view and a pillar number text recognition accuracy of 96.13%, and the method is suitable for the catenary pillar structure supporting the construction of major high-speed railway trunk lines in China.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃竹安,宋浩然,王浩然,劉俊博,顧子晨,戴鵬.鐵路接觸網(wǎng)支柱的圖像序列自適應識別方法計算機測量與控制[J].,2023,31(10):222-227.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-31
  • 最后修改日期:2023-04-10
  • 錄用日期:2023-04-11
  • 在線(xiàn)發(fā)布日期: 2023-10-26
  • 出版日期:
文章二維碼
沙坪坝区| 耿马| 城口县| 霍林郭勒市| 卫辉市| 安远县| 洛南县| 潞城市| 姚安县| 大足县| 无为县| 兴山县| 河北省| 马公市| 房产| 新竹县| 卫辉市| 策勒县| 金乡县| 桐柏县| 铁力市| 桂平市| 安泽县| 河西区| 临沧市| 方城县| 洪洞县| 太白县| 梁平县| 繁昌县| 镇康县| 乌兰察布市| 万山特区| 德令哈市| 长白| 延吉市| 辉县市| 绩溪县| 旬邑县| 正宁县| 祁东县|