国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

面向人工智能深度學(xué)習的知識圖譜補全技術(shù)與應用綜述
DOI:
CSTR:
作者:
作者單位:

江蘇科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(62261029)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    知識圖譜旨在為各種領(lǐng)域提供更加全面可靠的服務(wù),在實(shí)際應用中的價(jià)值不可估量,為了使其不斷更新和趨于完整,知識圖譜補全技術(shù)開(kāi)始被提出;近幾年,隨著(zhù)人工智能和深度學(xué)習的興起,許多國內外學(xué)者對知識圖譜補全方向進(jìn)行深入研究,出現了很多面向人工智能深度學(xué)習的知識圖譜補全模型,但相關(guān)的文獻綜述卻并不多;為了提供一個(gè)全面了解該領(lǐng)域的框架,有助于讀者能夠掌握當前的研究進(jìn)展和應用情況,并為未來(lái)的研究和應用提供一些參考;通過(guò)介紹其概念和典型的知識圖譜,從深度學(xué)習的知識補全技術(shù)的三個(gè)角度展開(kāi),分析和歸納了目前基于深度學(xué)習的知識圖譜補全模型,探討了不同模型的優(yōu)缺點(diǎn)及改進(jìn)模型;同時(shí),討論了現階段知識圖譜補全任務(wù)所存在的問(wèn)題和挑戰,并探索了該領(lǐng)域的應用方向和發(fā)展前景;綜上所述,深度學(xué)習在知識圖譜補全中具有巨大的發(fā)掘價(jià)值,亟待學(xué)者們進(jìn)行更深入的研究和進(jìn)一步地創(chuàng )新。

    Abstract:

    Knowledge graph aims to provide more comprehensive and reliable services for various fields, the value in practical applications is immeasurable, in order to make it constantly updated and complete, knowledge graph completion technology began to be proposed; In recent years, with the rise of artificial intelligence and deep learning, many scholars at home and abroad have conducted in-depth research on the direction of knowledge graph completion, and many knowledge graph completion models for artificial intelligence deep learning have emerged, but there are not many relevant literature reviews. In order to provide a comprehensive understanding of the field, it helps readers to grasp the current research progress and applications, and provides some references for future research and applications; By introducing its concept and typical knowledge graph, the current knowledge graph completion model based on deep learning is analyzed and summarized from the three perspectives of deep learning knowledge completion technology, and the advantages and disadvantages of different models and the improved models are discussed. At the same time, the problems and challenges of the knowledge graph completion task at this stage are discussed, and the application direction and development prospects of this field are explored. In summary, deep learning has great exploration value in knowledge graph completion, and scholars are urgently needed to conduct more in-depth research and further innovation.

    參考文獻
    相似文獻
    引證文獻
引用本文

姜穎,祁云嵩.面向人工智能深度學(xué)習的知識圖譜補全技術(shù)與應用綜述計算機測量與控制[J].,2024,32(5):8-16.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-03
  • 最后修改日期:2023-07-03
  • 錄用日期:2023-07-04
  • 在線(xiàn)發(fā)布日期: 2024-05-22
  • 出版日期:
文章二維碼
深圳市| 新郑市| 平舆县| 仁化县| 六安市| 韩城市| 鄂伦春自治旗| 梧州市| 通山县| 桓台县| 普安县| 达拉特旗| 通渭县| 南投县| 迁西县| 广宁县| 绥芬河市| 宣恩县| 资兴市| 灌云县| 寿阳县| 尼木县| 深泽县| 海晏县| 离岛区| 准格尔旗| 灵武市| 隆昌县| 鄯善县| 小金县| 九寨沟县| 汤原县| 英德市| 呼和浩特市| 独山县| 芦山县| 西畴县| 怀远县| 岚皋县| 郴州市| 乐业县|