国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

面向數據中心的服務(wù)器能耗模型綜述
DOI:
CSTR:
作者:
作者單位:

浪潮電子信息產(chǎn)業(yè)股份有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP301

基金項目:

山東省基金項目(2019LZH006)


A Survey of Server Energy Consumption Models in Data Center
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    伴隨著(zhù)云計算技術(shù)的快速發(fā)展,數據中心的服務(wù)器能耗日益激增,帶來(lái)了嚴重的經(jīng)濟和環(huán)境問(wèn)題,降低數據中心能耗,對縮減數據中心運營(yíng)成本、實(shí)現全球“雙碳”戰略目標具有重要意義。因此,不同層面的服務(wù)器能耗模型構建和預估成為了近年來(lái)研究的熱點(diǎn)。據此,從硬件、軟件層面系統地總結了服務(wù)器能耗模型的相關(guān)工作。在硬件層面,對服務(wù)器的整體能耗按加法模型、基于系統利用率模型和其他模型分類(lèi);同時(shí),還總結了服務(wù)器部件粒度的能耗模型,涵蓋CPU、內存、磁盤(pán)和網(wǎng)絡(luò )接口。在軟件層面,按機器學(xué)習的類(lèi)別將服務(wù)器能耗模型歸納為監督學(xué)習、非監督學(xué)習、強化學(xué)習。此外,還比較了不同能耗模型的優(yōu)缺點(diǎn)、適用場(chǎng)景,展望了能耗模型的未來(lái)研究方向。

    Abstract:

    With the rapid development of cloud computing, the increasing demand for server energy consumption in data center leads to crucial economic and environmental issues. Reducing the data center energy consumption is of great significance to cut down the operating cost of data center and realize the global "double-carbon" strategic goal. Therefore, an increasing amount of research on power consumption models and prediction at different levels in cloud servers. This paper conducted a systematic study about existing work in power consumption models from two levels, hardware and software. At the hardware level, the overall energy consumption models of the cloud server is classified according to the additive server power models, system utilization based server power models and other server power models, the energy consumption models of the server components are also presented, including the CPU, memory, disk and network interface. At the software level, the server energy consumption models are summarized according to the category of machine learning, such as supervised learning, unsupervised learning and reinforcement learning. By comparing existing approaches and solutions, we analyzed their advantages, limitations, and suitable scenarios. In addition, we also pointed out several possible research directions.

    參考文獻
    相似文獻
    引證文獻
引用本文

王東清,李道童,彭繼陽(yáng),葉豐華,張炳會(huì ).面向數據中心的服務(wù)器能耗模型綜述計算機測量與控制[J].,2023,31(11):7-15.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-22
  • 最后修改日期:2023-08-28
  • 錄用日期:2023-08-28
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
鸡西市| 辛集市| 聊城市| 沂源县| 东光县| 景东| 德清县| 基隆市| 长寿区| 阿拉善左旗| 肇州县| 安岳县| 扶余县| 凭祥市| 祥云县| 聂拉木县| 亚东县| 鄂州市| 二连浩特市| 准格尔旗| 图木舒克市| 东乡| 巴楚县| 金华市| 鄄城县| 永德县| 郎溪县| 宁河县| 公安县| 顺义区| 馆陶县| 邯郸县| 尉氏县| 万山特区| 公主岭市| 蒙城县| 龙川县| 天水市| 苏尼特左旗| 蛟河市| 黄平县|