国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

通道空間深度感知的輕量化水下目標檢測
DOI:
CSTR:
作者:
作者單位:

青島科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

1.山東省重點(diǎn)研發(fā)計劃(科技示范工程)(2021SFGC0701);2.青島市海洋科技創(chuàng )新專(zhuān)項(22-3-3-hygg-3-hy);


Lightweight underwater target detection for channel spatial depth perception
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種通道空間深度感知的輕量化水下目標檢測網(wǎng)絡(luò )CSDP-L-YOLO。該網(wǎng)絡(luò )基于YOLOv5網(wǎng)絡(luò )進(jìn)行改進(jìn),由特征感知模塊和雙注意門(mén)控策略組成。特征感知模塊旨在將解碼器中的多級特征自適應抑制或增強,優(yōu)化類(lèi)內學(xué)習的一致性,解決水下場(chǎng)景復雜導致的誤檢和漏檢問(wèn)題;通過(guò)線(xiàn)性操作和混洗結構生成特征映射,減少冗余特征的融合和計算,以減少模型的參數量和計算量。雙注意門(mén)控策略是在編碼器中同時(shí)引入并發(fā)通道空間擠壓-激勵機制模塊和卷積注意力模塊,進(jìn)一步關(guān)注強相關(guān)性特征,增強模型對特征的敏感度。實(shí)驗結果表明,與基線(xiàn)模型YOLOv5-s相比,mAP提高了2.4%,節省了20%參數量和15.8%計算量,檢測速度提升了8.2 ms。此外,與目前較為先進(jìn)的YOLOv8模型相比,mAP提高了1.9%。

    Abstract:

    A lightweight underwater target detection network CSDP-L-YOLO for channel spatial depth perception is proposed. The network is improved based on the YOLOv5 network and consists of a feature awareness module and a two-attention gating strategy. The feature sensing module aims at adaptive suppression or enhancement of multi-level features in the decoder, optimizing the consistency of in-class learning, and solving the problem of false detection and missing detection caused by the complexity of underwater scenes. The feature mapping is generated by linear operation and mixing structure to reduce the fusion and calculation of redundant features, so as to reduce the number of parameters and calculation amount of the model. The dual attention gating strategy is to introduce concurrent channel space squeezing and stimulation module and convolutional attention module into the encoder at the same time to further focus on the strong correlation features and enhance the sensitivity of the model to the features. The experimental results show that compared with the baseline model, mAP improves by 2.4%, saves 20% parameters and 15.8% computation, and improves the detection speed by 8.2 ms. In addition, mAP improves by 1.9% compared to the current more advanced YOLOv8 model.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙瑞金,李海濤,陸光豪.通道空間深度感知的輕量化水下目標檢測計算機測量與控制[J].,2024,32(9):86-93.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-03-28
  • 錄用日期:2024-03-29
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
中江县| 米易县| 墨玉县| 乌恰县| 万全县| 汝南县| 伊川县| 法库县| 大埔县| 渭源县| 手游| 蒙城县| 黑水县| 延寿县| 玛纳斯县| 恩施市| 靖宇县| 尼木县| 荣成市| 闽清县| 兴仁县| 滦平县| 临沧市| 靖州| 德江县| 报价| 绥江县| 莱西市| 财经| 江源县| 阳谷县| 治县。| 义马市| 英山县| 轮台县| 雷州市| 石城县| 冷水江市| 马龙县| 麟游县| 航空|