国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于IGA-BP神經(jīng)網(wǎng)絡(luò )的智能電能計量設備狀態(tài)自動(dòng)檢測系統
DOI:
CSTR:
作者:
作者單位:

廣西壯族自治區計量檢測研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

廣西科技基地和人才專(zhuān)項《廣西計量大數據科技服務(wù)業(yè)公共服務(wù)平臺建設》(桂科AD21238034)


Intelligent Energy Measurement Equipment Status Automatic Detection System Based on IGA-BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    面對不斷擴大的電網(wǎng)規模及愈加復雜的外部環(huán)境,影響智能電能計量設備安全穩定運行的因素也在不斷增加,,因此,設計基于IGA-BP神經(jīng)網(wǎng)絡(luò )的智能電能計量設備狀態(tài)自動(dòng)檢測系統。硬件中,設計數據采集模塊、信號處理模塊、數據傳輸模塊與數據分析模塊。軟件中,通過(guò)采集智能電能計量設備檢測數據,選取基礎電能計量誤差、電壓波動(dòng)幅度、電流波動(dòng)幅度、功率因數為智能電能計量設備狀態(tài)量,引入改進(jìn)遺傳算法-反向傳播算法(Improved Genetic Algorithm-Back Propagation,IGA-BP)神經(jīng)網(wǎng)絡(luò )對狀態(tài)量進(jìn)行迭代運算,實(shí)現智能電能計量設備狀態(tài)自動(dòng)檢測。實(shí)驗結果顯示:應用設計系統的智能電能計量設備狀態(tài)檢測時(shí)間最小值為2s,檢測結果與實(shí)際結果一致,充分證實(shí)了設計系統具備較好的設備狀態(tài)檢測效率與精度。

    Abstract:

    Faced with the constantly expanding scale of the power grid and the increasingly complex external environment, the factors affecting the safe and stable operation of intelligent energy metering equipment are also increasing. Therefore, a smart energy metering equipment status automatic detection system based on IGA-BP neural network is designed. In hardware, design data acquisition module, signal processing module, data transmission module, and data analysis module. In the software, by collecting detection data from intelligent energy metering equipment, basic energy metering error, voltage fluctuation amplitude, current fluctuation amplitude, and power factor are selected as the state variables of intelligent energy metering equipment. An improved genetic algorithm backpropagation (IGA-BP) neural network is introduced to iteratively calculate the state variables and achieve automatic detection of intelligent energy metering equipment status. The experimental results show that the minimum detection time for the intelligent electric energy metering equipment using the designed system is 2 seconds, and the detection results are consistent with the actual results, fully confirming that the designed system has good equipment status detection efficiency and accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

盧旋.基于IGA-BP神經(jīng)網(wǎng)絡(luò )的智能電能計量設備狀態(tài)自動(dòng)檢測系統計算機測量與控制[J].,2024,32(8):138-144.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-20
  • 最后修改日期:2024-04-30
  • 錄用日期:2024-05-06
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
四川省| 前郭尔| 宜君县| 蓝田县| 舟山市| 迭部县| 广饶县| 丘北县| 隆林| 华亭县| 富锦市| 唐河县| 邹城市| 威宁| 吉首市| 禹城市| 库尔勒市| 湖北省| 新巴尔虎左旗| 长子县| 涡阳县| 故城县| 探索| 东乌珠穆沁旗| 平邑县| 张家界市| 佛山市| 阳泉市| 咸丰县| 商都县| 沐川县| 历史| 房产| 神池县| 林西县| 东台市| 鄢陵县| 凤庆县| 驻马店市| 彰化县| 无锡市|