国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)PSPNet的手機LCD屏幕表面缺陷檢測
DOI:
CSTR:
作者:
作者單位:

廣東工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

廣東省重點(diǎn)領(lǐng)域研發(fā)計劃項目(2023B1111050010、2020B0101100001)


Surface Defect Detection of Mobile Phone LCD Screen Based on Improved PSPNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    手機屏幕是智能手機的關(guān)鍵部件,其品質(zhì)優(yōu)劣直接影響到用戶(hù)的使用體驗;因此,手機屏幕缺陷檢測成為工業(yè)生產(chǎn)中的重要環(huán)節;然而,手機LCD屏幕的表面缺陷檢測目前還存在檢測精確度低、模型參數較多等問(wèn)題,無(wú)法滿(mǎn)足實(shí)際工業(yè)生產(chǎn)需求;為了解決這些問(wèn)題,對現有的缺陷檢測算法和經(jīng)典語(yǔ)義分割模型進(jìn)行了研究,提出一種基于改進(jìn)PSPNet的手機LCD屏幕表面缺陷檢測模型;模型采用MobileNetV3作為特征提取網(wǎng)絡(luò ),有效減少了模型參數;采用多尺度金字塔池化模塊,進(jìn)一步整合多尺度上下文信息,提高了模型的特征提取能力,有效應對屏幕圖像中缺陷尺寸微小、邊界模糊、相同缺陷尺寸差異較大的問(wèn)題;同時(shí),通過(guò)引入注意力機制,增強了模型的魯棒性;實(shí)驗結果表明,在SQ、Mura、TP、Line四種類(lèi)型的手機LCD屏幕表面缺陷檢測上,改進(jìn)后的模型準確度明顯優(yōu)于基線(xiàn)模型。

    Abstract:

    As the core component of a phone, the quality of screen is directly related to the user's experience. Therefore, mobile phone screen defect detection has become an important part of industrial production. However, the surface defect detection of mobile LCD screens still faces problems such as low detection accuracy and a large number of model parameters, which cannot meet the actual industrial production needs. After studing existing defect detection algorithms and classical semantic segmentation models, an improved mobile phone LCD screen defect detection model based on PSPNet is proposed to solve the problems. MobileNetV3 is used to replace the original ResNet50 as the backbone, which effectively reduces the model parameters and shortens the training time. A multi-scale pyramid pooling module is proposed to effectively integrate multi-scale contextual information, which improves the feature extraction ability of the model. It also effectively addresses the issues of small defect sizes, blurred boundaries, and significant differences in the size of the same defect in screen images Meanwhile, the introduction of attention mechanism improves the anti-interference ability of the model. The experimental results show that the accuracy of the improved model on the mobile phone LCD screen dataset has significantly better accuracy than other traditional semantic segmentation models.

    參考文獻
    相似文獻
    引證文獻
引用本文

肖彬,陳平華.基于改進(jìn)PSPNet的手機LCD屏幕表面缺陷檢測計算機測量與控制[J].,2024,32(9):36-43.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-22
  • 最后修改日期:2024-04-25
  • 錄用日期:2024-04-26
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
滦南县| 忻州市| 永兴县| 玛纳斯县| 榆中县| 九龙县| 吕梁市| 庆阳市| 四子王旗| 梨树县| 梁河县| 遂川县| 瑞金市| 玉龙| 洞头县| 库车县| 会理县| 隆回县| 搜索| 柳河县| 监利县| 荆门市| 庐江县| 通许县| 湖北省| 峡江县| 乐安县| 青田县| 彭阳县| 双鸭山市| 阿合奇县| 根河市| 南康市| 镇安县| 镇沅| 吉木乃县| 六安市| 岱山县| 沅江市| 兴海县| 聊城市|